
CH 6.
VECTORS, LISTS, AND SEQUENCES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

VECTORS

• The Vector ADT (Ch. 6.1.1)

• Array-based implementation (Ch. 6.1.2)

APPLICATIONS OF VECTORS

• Direct applications

• Sorted collection of objects (elementary database)

• Indirect applications

• Auxiliary data structure for algorithms

• Component of other data structures

VECTOR ADT

• The Vector ADT extends the notion
of array by storing a sequence of
arbitrary objects

• An element can be accessed,
inserted or removed by specifying
its rank (number of elements
preceding it)

• An exception is thrown if an incorrect
rank is specified (e.g., a negative
rank)

• Main vector operations:

• at 𝑖 : returns the element at index 𝑖

• set 𝑖, 𝑒 : replace the element at index 𝑖

with 𝑒

• insert 𝑖, 𝑒 : insert a new element 𝑒 to

have index 𝑖

• erase 𝑖 : removes the element at index 𝑖

• Additional operations size() and empty()

ARRAY-BASED VECTOR
STORAGE

• Use an array 𝑉 of size 𝑁

• A variable 𝑛 keeps track of the size of the vector (number of elements stored)

• at 𝑖 is implemented in 𝑂 1 time by returning 𝑉 𝑖

𝑉

0 1 2 ni

𝑁 − 10

ARRAY-BASED VECTOR
INSERTION

• In insert 𝑖, 𝑒 , we need to make room for the new element by shifting forward
the 𝑛 − 𝑖 elements 𝑉 𝑖 , … , 𝑉 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

V

0 1 2 ni

V

0 1 2 ni

V

0 1 2 n

e

i

ARRAY-BASED VECTOR
DELETION

• In erase 𝑖 , we need to fill the hole left by the removed element by shifting
backward the n - r - 1 elements V[r + 1], …, V[n - 1]

• In the worst case (r = 0), this takes O(n) time

V

0 1 2 nr

V

0 1 2 n

e

i

V

0 1 2 ni

PERFORMANCE

• In the array based implementation of a Vector

• The space used by the data structure is 𝑂(𝑛)

• size(), empty(), at(𝑖), and set 𝑖, 𝑒 run in 𝑂(1) time

• insert 𝑖, 𝑒 , and erase 𝑖 run in 𝑂(𝑛) time

• In an insert 𝑖, 𝑒 , when the array is full, instead of throwing an
exception, we can replace the array with a larger one

EXERCISE:

• Implement the Deque ADT using Vector functions

• Deque functions:

• front(), back(), insertFront(𝑒), insertBack(𝑒), eraseFront(),
eraseBack(), size(), empty()

• Vector functions:

• at 𝑖 , set 𝑖, 𝑒 , insert 𝑖, 𝑒 , erase 𝑖 , size(), empty()

EXERCISE SOLUTION:

Deque

• size() and empty()

• front()

• back()

• insertFront(𝑒)

• insertBack(𝑒)

• eraseFront()

• eraseBack()

Realization using Vector Functions

• size() and empty()

• at(0)

• at 𝑠𝑖𝑧𝑒() − 1

• insert(0, 𝑒)

• insert(𝑠𝑖𝑧𝑒(), 𝑒)

• erase(0)

• erase 𝑠𝑖𝑧𝑒() − 1

VECTOR SUMMARY

Array

Fixed-Size or Expandable

List Singly or

Doubly Linked

𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑒) and 𝑒𝑟𝑎𝑠𝑒(𝑖) 𝑂(1) Best Case (𝑖 = 𝑛)

𝑂(𝑛) Worst Case

𝑂(𝑛) Average Case

?

𝑎𝑡(𝑖) and 𝑠𝑒𝑡(𝑖, 𝑒) 𝑂(1) ?

𝑠𝑖𝑧𝑒() and 𝑒𝑚𝑝𝑡𝑦() 𝑂(1) ?

ITERATORS AND POSITIONS

• An iterator abstracts the process of scanning through a collection of elements

• Can be implemented on most data structures in this course, e.g., vector and list

• Methods of the Iterator ADT:

• hasNext() – returns whether another element follows

• next() – returns iterator for next element

• elem() – return element at position, also known as dereference in C++ (* operator)

• Iterators handle many operations in a uniform way

• Example – insert for list and vector take iterators so the functions are called the same way

• Traversal of data structure from begin() to end()

LISTS AND SEQUENCES

• Iterators (Ch. 6.2.1)

• List ADT (Ch. 6.2.2)

• Doubly linked list (Ch. 6.2.3)

• Sequence ADT (Ch. 6.3.1)

• Implementations of the sequence ADT (Ch. 6.3.2-3)

LIST ADT

• The List ADT models a sequence of

positions storing arbitrary objects

• establishes a before/after relation

between positions

• It allows for insertion and removal in

the “middle”

• Generic methods:

• size() and empty()

• Accessor methods:

• begin() and end()

• Update methods:

• insertFront(𝑒), insertBack(𝑒),

insert(𝑝, 𝑒) – Note insert will insert 𝑒

before iterator 𝑝

• eraseFront(), eraseBack(), erase(𝑝)

INSERT 𝑝, 𝑒

A B X C

A B C

p

A B C

p

X

q

p q

ERASE(𝑝)

A B C D

p

A B C

D

p

A B C

PERFORMANCE

• Assume doubly-linked list implementation of List ADT

• The space used by a list with 𝑛 elements is 𝑂(𝑛)

• The space used by each iterator of the list is 𝑂(1)

• All the operations of the List ADT run in 𝑂(1) time

LIST SUMMARY

List Singly-Linked List Doubly- Linked

begin(), end(),
insertFront(),
insertBack(),
eraseFront()

𝑂(1) 𝑂(1)

insert(𝑝, 𝑒),
eraseBack(),
erase()

𝑂(𝑛) Worst and Average case

𝑂(1) Best case

𝑂(1)

size() and empty() 𝑂(1) 𝑂(1)

SEQUENCE ADT

• The Sequence ADT is a combination of the Vector and List ADTs

• Elements accessed by

• Index or

• Iterator (Position)

• All items in the List ADT plus the following “bridging” functions:

• atIndex(𝑖) – returns position of element at index 𝑖

• indexOf(𝑝) – returns index of element at position 𝑝

APPLICATIONS OF SEQUENCES

• The Sequence ADT is a basic, general-purpose, data structure for

storing an ordered collection of elements

• Direct applications:

• Generic replacement for stack, queue, vector, or list

• Small database (e.g., address book)

• Indirect applications:

• Building block of more complex data structures

ARRAY-BASED IMPLEMENTATION

• We use a circular array storing
positions

• A position object stores:

• Element

• Index

• Indices 𝑓 and 𝑙 keep track of first
and last positions

0 1 2 3

positions

elements

S

lf

SEQUENCE IMPLEMENTATIONS

Circular Array List Doubly- Linked

𝑠𝑖𝑧𝑒(), 𝑒𝑚𝑝𝑡𝑦(), 𝑏𝑒𝑔𝑖𝑛(), 𝑒𝑛𝑑(),
𝑖𝑛𝑠𝑒𝑟𝑡𝐹𝑟𝑜𝑛𝑡(), 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑐𝑘()

𝑂(1) 𝑂(1)

𝑎𝑡𝐼𝑛𝑑𝑒𝑥(𝑖) and 𝑖𝑛𝑑𝑒𝑥𝑂𝑓(𝑝) 𝑂(1) 𝑂(𝑛)

𝑖𝑛𝑠𝑒𝑟𝑡(𝑝, 𝑒) and 𝑒𝑟𝑎𝑠𝑒(𝑝) 𝑂(𝑛) 𝑂(1)

INTERVIEW QUESTION 1

• Write code to partition a list around a value x, such that all nodes less than x

come before all nodes greater than or equal to x.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• Implement a function to check if a list is a palindrome.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

