M
) eHs O
\ e

° CH é.
X VECTORS, LISTS, AND SEQUENCES

([ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
}) DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND
O j) MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

L2
L4
L 4
L4
? 4

?

1\) VECTORS

O

®* The Vector ADT (Ch. 6.1.1)

* Array-based implementation (Ch. 6.1.2)

!
[o

O

!
?

® Direct applications

1\\5 APPLICATIONS OF VECTORS

* Sorted collection of objects (elementary database)

® Indirect applications

® Auxiliary data structure for algorithms

®* Component of other data structures

MAN, YOURE BEING IN(DONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FRoM ONE, SOME. FrRom ZERD.

DIFFERENT TASKs CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGOR ITHMS
EXPERT DONALD KNUTH,

“WHO ARE You? How DID_
YOU GET IN MY HOUSE?
/

VAT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

! :

)
[s

VECTOR ADT

® The Vector ADT extends the notion
of array by storing a sequence of
arbitrary objects

®* An element can be accessed,
inserted or removed by specifying
its rank (number of elements
preceding it)

® An exception is thrown if an incorrect
rank is specified (e.g., a negative
rank)

®* Main vector operations:
: returns the element at index i

: replace the element at index i
with e

: insert a new element e to

have index i

: removes the element at index i

® Additional operations and

ARRAY-BASED VECTOR {
STORAGE

®* Use an array V of size N

* A variable n keeps track of the size of the vector (humber of elements stored)

is implemented in O(1) time by returning V/[i]

0 N -1

VEEE PP TP PPy [T][]
R i n

LN
\

O

!
T

ARRAY-BASED VECTOR (
INSERTION
®In , we need to make room for the new element by shifting forward

the n — i elements V[i],...,V[n — 1]

®* |In the worst case (i = 0), this takes O(n) time

VEEETTTT I T T I TTIT]
[n

012
Vlllllllﬁ?ﬁ:‘lllllll
01 2 i n

V DR I T T 111
01 2 i n

ARRAY-BASED VECTOR g
DELETION

®In , we need to fill the hole left by the removed element by shifting
backward the N —r — 1 elements V[r + 1], ..., V[n — 1]

®* In the worst case (I = 0), this takes O(n) time

V IR T T I T T T 1]
012 i n

V B EEEEEEEEE
012 i n

V BRI T T T 111
012 r n

* K\) 4
1\0 PERFORMANCE ¢

° ® In the array based implementation of a Vector

® The space used by the data structure is 0 (n)

* size(), empty(), at(i), and set(i, e) runin O(1) time
l * insert(i,e), and erase(i) run in O(n) time

® In an insert(i, e), when the array is full, instead of throwing an
Cf exception, we can replace the array with a larger one
O

1\) EXERCISE:

O

® Implement the Deque ADT using Vector functions

®* Deque functions:
* front(), back(), insertFront(e), insertBack(e), eraseFront(),

eraseBack(), size(), empty()
l ® Vector functions:
0

* at(i), set(i, e), insert(i, e), erase(i), size(), empty()

EXERCISE SOLUTION:

Deque

size() and empty()
front()

back()
insertFront(e)
insertBack(e)
eraseFront()

eraseBack()

Realization using Vector Functions

size() and empty()
at(0)

at(size() — 1)
insert(0, e)
insert(size(), e)
erase(0)

erase(size() — 1)

1\0 VECTOR SUMMARY

insert(i,e) and erase(i) | O(1) Best Case (i = n)
O (n) Worst Case
O(n) Average Case

l at(i) and set(i, e)

O

A

\

ITERATORS AND POSITIONS

* An iterator abstracts the process of scanning through a collection of elements

®* Can be implemented on most data structures in this course, e.g., vector and list

Methods of the lterator ADT:
— returns whether another element follows
— returns iterator for next element

— return element at position, also known as dereference in C++ (* operator)

lterators handle many operations in a uniform way
®* Example — insert for list and vector take iterators so the functions are called the same way

* Traversal of data structure from begin() to end()

LISTS AND SEQUENCES

® Iterators (Ch. 6.2.1) m
® List ADT (Ch. 6.2.2) - Y/

® Doubly linked list (Ch. 6.2.3)
* Sequence ADT (Ch. 6.3.1)

® Implementations of the sequence ADT (Ch. 6.3.2-3)

LIST ADT

®* The ADT models a sequence of ® Accessor methods:
positions storing arbitrary objects and
* establishes a before/after relation * Update methods:

between positions

®* |t allows for insertion and removal in
the “middle”

® Generic methods:

and

Q\o
1\] INSERT(p, e)

P
!A !B !C
P

1\0 PERFORMANCE

O

® Assume doubly-linked list implementation of List ADT
* The space used by a list with n elements is O(n)
* The space used by each iterator of the list is 0(1)
* All the operations of the List ADT run in O(1) time

!
[p

K\) 4
1\) LIST SUMMARY ¢

/

O List Singly-Linked List Doubly- Linked
begin(), end(), 0(1) 0(1)
insertFront(),
insertBack(),
eraseFront()

l insert(p, e), 0 (n) Worst and Average case
eraseBack(), 0(1) Best case

O erase()

SEQUENCE ADT

® The is a combination of the Vector and List ADTs

® Elements accessed by
® Index or

® Iterator (Position)

® All items in the List ADT plus the following “bridging” functions:
— returns position of element at index i

— returns index of element at position p

APPLICATIONS OF SEQUENCES

®* The Sequence ADT is a basic, general-purpose, data structure for

storing an ordered collection of elements

® Direct applications:
® Generic replacement for stack, queue, vector, or list

®* Small database (e.g., address book)

® Indirect applications:

® Building block of more complex data structures

ARRAY-BASED IMPLEMENTATION

®* We use a circular array storing
positions

® A position object stores:
® Element

® Index

® Indices f and [keep track of first
and last positions

&

(
I
I
I
\

~— T

elements\I
.| S |
\Wa XE ‘/I\"' |
1/

| | i

)
I
I

/ositions;

/

:
3

1\.\5 SEQUENCE IMPLEMENTATIONS

O Circular Array List Doubly- Linked

size(), empty(), begin(), end(), 0(1)
insertFront(), insertBack()

l atindex(i) and indexOf (p) 0(1)

O insert(p,e) and erase(p) 0(n)

1§ INTERVIEW QUESTION 1

O

®* Write code to partition a list around a value x, such that all nodes less than x

come before all nodes greater than or equal to x.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

1\\5 INTERVIEW QUESTION 2

O

® Implement a function to check if a list is a palindrome.

!
[7

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

